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ABSTRACT 

Machine learning has been used in the field of 

petrophysics for a long time and is well-understood by 

petrophysicists. Recently, however, more sophisticated 

regressors and models have been made available through 

interfaces such as Python and Microsoft’s ML.Net 

machine learning software library. The purpose of this 

paper is to provide a guide to access current machine 

learning libraries to predict log data through software, 

such as Interactive Petrophysics (IP), utilize the latest 

logistic (and classification) regressors to predict various 

types of petrophysical data, provide a quantitative 

evaluation of the prediction accuracy and repeatability of 

new regressors against well-known standards, and 

finally provide a method to evaluate the best 

initialization and hyperparameters for each regressor 

used.  

Quantitative comparisons of the regression results to 

existing and known methods such as multi-linear 

regression (MLR), Domain Transfer Analysis (DTA), 

and simple neural networks (NN) are provided as a 

benchmark. This paper includes a workflow to predict 

petrophysical data, including methods to group data and 

recommended pre-processing steps before training 

models. 

This paper is on applied petrophysics, computer science, 

and quantitative evaluation of the methods and means to 

predict petrophysical data. It includes a concise analysis 

of what current technology is available, how the latest 

regressors function, strengths and weaknesses of these 

regressors, and the best parameters to use to predict 

different data types. 

Although other machine learning petrophysics papers 

have been published, this one is specific to the decision-

tree and gradient-based regressors available in the public 

technology space (e.g., Light GBM, fast forest, online 

gradient descent, etc.) and that have been implemented 

in the Microsoft ML.Net library. 

INTRODUCTION 

Most practicing petrophysicists probably use machine 

learning regularly and have been doing so for many 

decades before the artificial intelligence renaissance that 

has recently taken place. Methods such as logistic 

regression and classification are routinely used to predict 

petrophysics-related data. The domain of petrophysics is 

vast and encompasses many different data in the form of 

wellbore wireline measurements (logs), seismic data, 

rock facies, core measurements, etc. to which these 

algorithms may be applied. 

 

There are curve prediction tools available in most 

commercial petrophysics software such as linear 

regression, non-linear curve fitting, MLR, DTA, NN, 

etc. The limitations and accuracy of these predictors are 

sufficiently understood from decades of use. This paper 

provides an overview of some newer technologies and 

quantification of decision tree and gradient-based 

regressors in comparison to these older and well-known 

methods of estimating data. 

 

A basic workflow is introduced that outlines the 

necessary steps to use the newer technologies to predict 

data. Details are provided on a specific implementation 

of these new algorithms utilizing Microsoft’s ML.Net 

library. 

LOSS FUNCTIONS 

A loss function quantifies the magnitude of error 

between predicted and actual values. Distinct types of 

loss functions can be used to help guide model fitting and 

assess the overall quality of model predictions. 

 

Commonly used loss functions are the coefficient of 

determination (R2), Mean Absolute Error (MAE), Mean 
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Square Error (MSE), and Root Mean Square Error 

(RMSE). These loss functions have different units, uses, 

and applications. 

 

The coefficient of determination (R2) is defined in 

Equations 1 to 5. It provides a measure of the strength 

and direction of association that exists between two 

variables (Doge, Y., 2008, pp. 88-91). 

 

This loss function assumes the following: continuous 

variables, there is a linear or linearizable relationship, no 

significant outliers exist, and the variables are 

approximately normally distributed. It does not provide 

much information about overfitting issues or feature 

importance. 
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Equation 1: mean value 

𝑒𝑖 = (𝑦𝑖 − �̂�𝑖) 

Equation 2: error or residual between actual value y, and 

predicted value �̂� 
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Equation 3: sum of residual squares 
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Equation 4: sum of total deviation from mean 

 

𝑅2 = 1 −
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇

 

Equation 5: coefficient of determination 

 

Mean Absolute Error (MAE) (Equation 6) treats all 

errors similarly, with no penalty applied to outliers. This 

may be a better metric for noisy data. The units are also 

easy to interpret and understand (Ciampiconi et al., 

2023). 
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Equation 6: mean absolute error 

Mean Square Error (MSE) (Equation 7) penalizes 

outliers with a square term. MSE is also scale-dependent 

and has different units than the original function, making 

it more difficult to directly compare (Dodge, Y., 2008, p. 

138). 
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Equation 7: mean square error 

 

Root Mean Square Error (RMSE) (equation 8) takes the 

root of MSE thereby making the units more interpretable 

while still penalizing outliers (Dodge, Y., p. 366). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑒𝑖)

2

𝑛

𝑖

 

Equation 8: root mean square error 

Loss functions can drive machine learning model 

training through iterative minimization. It is important to 

choose the correct loss function to achieve the desired 

results. 

MACHINE LEARNING 

There are many different types of machine learning 

algorithms available through public software libraries. 

Some are suited to solving specific problems and may or 

may not be tangible to a petrophysicist working with 

subsurface data. 

Three main types of machine learning models are 

implemented in Microsoft’s ML.Net software library: 

logistic regression, classification (binary and multi-

class), and neural networks (e.g., deep neural networks, 

convolutional neural networks). 

Logistic regression estimates continuous functions 

(labels) using inputs (features). Classification can be of 

both binary and multi-class types, with the latter more 

appropriate for problems such as lithologic facies 

prediction. Neural networks have been successfully used 

to build language learning models (i.e., Chat Generative 

Pre-Trained Transformer) and models for image 

recognition, pattern matching, and audio processing. 

These are generally regarded as black boxes that are very 

vast and deep neural networks trained on enormous 

amounts of data. 
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Each one of these learning models have different 

applications that depend on the problem that is presented 

and the type of data that is used. Tradeoffs occur between 

the ability to handle the type of data (in terms of missing 

values, outliers, irrelevant inputs, interpretability of the 

model) and predictive power (Hastie et al., 2017, pp. 

351-352).   

The newer decision tree-based algorithms examined in 

this paper can handle both logistic regression and 

classification. In ML.Net, these include Light Gradient 

Boosted Machine (GBM) (Guolin et al., 2017), Fast 

Tree, Fast Tree Tweedie, Fast Forest, and Generalized 

Additive Model (GAM) (Hastie et al., 2017, pp 295-

297). There are additional Quasi-Newtonian or iterative 

mathematical optimization algorithms such as Stochastic 

Dual Coordinate Ascent (SDCA) (Shalev-Shwartz, S., 

2013), and Online Gradient Decent (OGD). These are 

methods that are used to find zeroes or local maxima and 

minima of differentiable loss functions thereby 

optimizing weights in a model for the best fit. 

Additional linear models such as Ordinary Least Squares 

(OLS) and Poisson (Limited-memory Broyden-Fletcher-

Goldfarb-Shanno, L-BFGS) regression are included. 

Details of these algorithms can be found in the Microsoft 

Machine Learning .NET API documentation  

(https://learn.microsoft.com/en-us/dotnet/machine-

learning/). 

BASIC DECISION TREES 

Decision trees are simple data structures represented by 

nodes and branches. Nodes can either be a decision node 

(internal) or a leaf node (external). Branches between 

nodes represent decision rules. Decision trees work by 

asking binary (yes/no) questions to split nodes and are 

well suited to regression and classification problems 

(Hastie et al., 2017, pp. 307-310). 

Decision trees operate based on two principles: entropy 

and information gain. 

Entropy (E) is a mathematical quantification of 

randomness in a data set. It is defined in Equation 9 for 

N classes with a probability (pi) of randomly picking an 

element of class i. Pi, represents the number of members 

in class i divided by the total number of members of all 

classes.  

𝐸 = − ∑ p𝑖log2(p𝑖)

𝑁

𝑖

 

Equation 9: entropy 

Information Gain (IG) quantifies the quality of splitting 

a data set at a specific point by computing the amount of 

entropy removed. When building decision trees, it is 

advantageous to seek zero entropy in each branch to 

create more accurate predictions. This essentially 

quantifies the process of splitting the data into well-

sorted sets. 

Information gain in a decision tree is calculated by 

subtracting the weighted average of the entropy values 

computed for each child node. The weighting term, γ 

represents the number of elements in each child node 

divided by the total number of elements in all child 

nodes.  

𝐼𝐺 = 𝐸(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑ 𝛾𝑖 ∗ 𝐸(𝑐ℎ𝑖𝑙𝑑𝑖)

𝑁

𝑖

 

Equation 10: information gain 

 

Figure 1: parent and child nodes in a tree 

As an example, the entropy of the parent node of Figure 

1 is equal to 1.0 (equivalent number of elements in each 

class, Equation 9), and a split is performed that results in 

two branches. The left branch has a single class (entropy 

= 0, Equation 9) with 3 elements, and the right branch 

results in 7 elements of two different classes. 

https://learn.microsoft.com/en-us/dotnet/machine-learning/
https://learn.microsoft.com/en-us/dotnet/machine-learning/
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Figure 2: entropy calculations 

The entropy value of the right branch computed using 

Equation 9 (as in Figure 2) is 0.8631. In this case, the 

weight terms are 0.3 (3/10) for the left branch (γleft) and 

0.7 (7/10) for the right branch (γright). The resultant value 

of information gain (from Equation 10) is 0.3958 as 

shown in Equation 11. This value of information gain 

represents how much entropy is removed from the 

system due to the split.  

𝐼𝐺 = 1 − [𝐸𝑙𝑒𝑓𝑡𝛾𝑙𝑒𝑓𝑡 + 𝐸𝑟𝑖𝑔ℎ𝑡𝛾𝑟𝑖𝑔ℎ𝑡] 

      = 1 − [0 ∗ 0.3 + 0.8631 ∗ 0.7] 
      = 1 − 0.6042 
      = 0.3958 

Equation 11: information gain 

Higher values of information gain imply more sorting 

has occurred. In decision trees, the amount of IG can also 

be used to determine how useful a particular feature is 

sorting classes. The best decision trees have attributes 

that return high information gain and low entropy. 

Figure 3 shows an example of utilizing wireline log 

measurements as features in building a decision tree. 

Cutoff values can be used as decisions to sort the data as 

depicted in the branches and nodes of the tree. 

Overfitting Problem 

Due to the inherent nature of decision tree algorithms, 

there is a tendency to overfit data while training. This 

occurs when the tree recursively splits the feature space 

creating many branches and leaf nodes leading to 

extremely specific rules that only apply to the training 

data set.  

 

Figure 3: wireline log-based decision tree 

An over-fit model tends to capture noise, is fit-for-

purpose, overly complex, and sensitive to inputs (Hastie 

et al., 2017, pp.219-220). 

There are strategies or techniques to counter this effect, 

including regularization, pruning, controlling tree depth, 

and ensemble learning.  

Other Notable Problems with Decision Trees 

Decision trees can also suffer from instability due to high 

variance. Since trees are hierarchical structures, errors 

made in the initial splits tend to propagate down the tree. 

They are also prone to producing data with a lack of 

smoothness (Hastie et al., 2017, pp. 312-313). 

Techniques discussed later in this paper, such as 

bagging, boosting, and controlling tree growth 

parameters help mitigate this problem. 

Ensemble Learning 

Ensemble learning is a technique that enhances 

prediction accuracy by utilizing multiple models in 

conjunction. This approach creates a sophisticated model 

by integrating a variety of simpler models (weak 

learners) (Hastie et al., 2017, pp. 605-606). 

A random forest (Figure 4) is a type of ensemble learning 

algorithm where several decision trees are created in 

parallel with subsets of the training data. An average of 

the results of each model is taken as the final answer 

from the ensemble (Hastie et al., 2017, pp. 587-588). 
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Figure 4: depiction of random forest

There exists a variety of ensemble learning models. The 

reader may be familiar with terms such as bagging and 

boosting. Bagging (or bootstrap aggregation) refers to 

the process of training multiple models in parallel, as 

implemented in a random forest (Hastie et al., 2017, pp. 

249-252, 282-288). Bagging tends to be more flexible 

and less sensitive than boosting. Bagging utilizes random 

sampling with replacement, and works well with 

decision trees (Hastie et al., 2017, pp. 587) (Doge, Y., 

2008, pp. 51-53). 

As opposed to bagging, boosting is the sequential 

training of multiple models whereby each subsequent 

model learns from the mistakes of the previous model. 

Subsequent learners place more emphasis on 

undertrained or misclassified samples thereby improving 

the model fit, however, this can lead to over-fitting. 

Boosting utilizes random sampling with replacement 

over weighted data. It is important to point out that data 

is weighted in a boosted model, unlike bagging. Boosting 

is used in gradient-boosted trees (Hastie et al., 2017, pp. 

86-88, 337-342, 353-358, 605-606). 

The process of boosting produces incremental gains that 

can be added together to create a model that is very 

accurate at predicting a value. This is done by combining 

the many weak learners into a single strong learner.  

As an example, the first model (m) in a boosted ensemble 

may predict a value by simply averaging all the values in 

a data set. To improve upon this, the subsequent model 

(m+1) will aim to minimize the residuals or differences 

between the predicted values and the actual values. 

Scaling the residuals with some factor helps to prevent 

over-fitting and to generalize the model. This scaling 

factor is defined as the learning rate. 

By using a differentiable loss function, such as MSE, the 

process of gradient descent can then be used to help to 

minimize the residuals by numerical optimization. 

Hence, we have gradient-boosted trees. The gradient 

movement occurs in the direction of minimizing the loss 

function, i.e., a negative gradient. Predictions for each 

tree added to the ensemble model are multiplied by the 

learning rate. The learning rate thereby controls the step 

size the ensemble takes in converging. It is advisable to 

employ a small learning rate along with a substantial 

number of trees in boosting to facilitate easier 

convergence (Hastie et al., 2017, pp. 358-361). 

As with other similar convergence algorithms, the 

number of iterations can be limited if the loss metric does 

not improve after many boosting rounds thereby 

stopping the algorithm and saving computational time.
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Figure 5: predicted data over N boosting rounds

Gradient boosting is well suited for tabular data (i.e., log 

or core data), may be used with both logistic regression 

and classification algorithms, and can be quantitatively 

interpreted unlike other machine learning black box 

models (i.e., DNN/CNN).  

An example is shown in Figure 5 of training and 

predicted data with Light GBM over N boosting 

iterations. The average value of the training data is first 

predicted and as the number of boosting iterations 

(models added to the ensemble) increases the predictions 

become more accurate. 

There are several boosting algorithms available within 

ML.Net: Gradient-based One-Side Sampling (GOSS), 

Gradient Boosting Decision Tree (GBDT), and Dropouts 

meet multiple Additive Regression Trees (DART). 

These boosting algorithms have different performance 

characteristics and applications for specific types of data. 

For example, GBDT may be a better choice for clean 

data sets whereas DART may be better suited to noisier 

data (Soyoung, L., 2024). 

LIGHT GBM 

Light GBM is one of the most accurate algorithms 

available from ML.Net when predicting petrophysical 

data from the author’s experience. It is widely used and 

well-maintained.  

Light GBM has been optimized to create decision trees 

that grow leaf-wise. It uses histogram-based algorithms 

to bucket data into bins that are used to calculate 

information gain and create splits within the data set as 

the tree grows. Light GBM uses GOSS to improve 

training efficiency. It also employs feature bundling to 

combine features and reduce dimensionality in the data 

set. This results in more efficient tree construction 

(Goulin et al., 2017)(Soyoung, L., 2024). 

Like other decision-tree-based algorithms, Light GBM 

suffers from the problem of over-fitting training data. To 

help mitigate this, parameters can be constrained that 

control the growth of the tree. Specifically, weak 

predictors are purposefully created (shallow trees) and 

controlled by hyperparameters to prevent over-fitting. 

Regularization also plays a large role to help control 

over-fitting.  

Light GBM can be used to solve both logistic regression 

and classification problems. 

ML.NET ALGORITHMS 

Table 1 summarizes each ML.Net regressor, data 

structure, and algorithm used. 
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Regressor Data Structure Algorithm Details 

Light GBM Decision tree Gradient Boosted Decision Tree (Goulin, K. et al., 2017) 

Fast Forest Decision tree Random forest (Hastie et al., 2017, pp 587-588) 

Fast Tree Decision tree Gradient Boosted Decision Tree (using the Multiple Additive Regression 

Tree algorithm) (Rashmi, K.V., 2015) 

Fast Tree Tweedie Decision tree Gradient Boosted Decision Tree (Yang et al., 2016) 

OLS Linear least 

squares 

Ordinary least squares linear regression 

SDCA 

 

Convergence 

algorithm 

Stochastic Dual Coordinate Ascent optimization technique for convex 

objective functions (Shalev-Shwartz, S., 2013) (Hsiang-Fu, Y. et al., 2010) 

OGD Convergence 

algorithm 

Stochastic gradient descent optimization technique for convex loss 

functions (non-batch) 

LBFGS Poisson Linear 

regression 

Poisson regression implementation with LBFGS optimization technique 

(generalized linear model) 

GAM Decision tree Shallow Gradient Boosted Trees (Lou, Y., et al., 2012) 

Non-linear functions 

Table 1: summary of ML.net algorithms

EVALUATING ALGORITHMS 

In this paper, the predictions from training and test data 

made by each algorithm are evaluated based on 

calculated loss functions. In addition, feature 

information is provided for the algorithms by 

permutation feature importance calculations. Five-fold 

cross-validation is performed on test data, and algorithm 

prediction repeatability is analyzed by varying 

hyperparameters during training. 

 

Predicted data is also visualized graphically in cross 

plots to evaluate fit and overall shape. This is an 

important step as some algorithms can be prone to 

creating oddly shaped predicted data sets in these 2D 

spaces (e.g., flatline cutoffs at specific values, etc.) that 

may not be discernable in histograms or statistical plots. 

 

Input data is split into a test and train fraction for 

evaluating each algorithm. For training, 80% of the data 

is used with the remaining 20% for testing. This helps 

the interpreter assess whether the model is overfitted to 

the training data. By testing the predictions with the test 

data set using k-fold cross-validation, a quantitative 

assessment of the generalization of the model is possible. 

SOFTWARE IMPLEMENTATION 

In this paper, Interactive Petrophysics and Microsoft’s 

ML.Net library are used together to perform predictions 

of log data by a computer program written by the author 

in C#. 

An Application Programming Interface (API) is made 
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available through IP to access objects within the memory 

space of a running instance of the application. 

Specifically, access is provided to array-based log data 

represented in single-precision floating-point 32-bit 

format. These data are imported into the ML.Net data 

structures to build regression models and to predict data. 

The predictions are then written back into the IP memory 

space via the API resulting in a new curve. This new 

estimated data can then be visualized and used for 

subsequent calculations. 

The basic workflow of ML.Net consists of loading 

training data into an implemented data frame interface 

(IDataView object), providing options for an algorithm, 

creating a model, training it, making predictions, and 

evaluating the predictions. This workflow is performed 

iteratively until the user is content with the results. 

The terminology used by Microsoft to describe the 

process of mapping the raw data to the resultant 

predictions is a pipeline. Pipelines are created for each 

algorithm and can be static or sweepable. A sweepable 

pipeline is a collection of pipelines that have been 

configured to vary options or parameters to provide 

multiple estimators. 

In source code, the process consists of extracting the data 

from the data source (e.g., petrophysics software API, 

LAS file, database, etc.) and populating a data frame. 

Once this step is complete, the data is split into training 

and test sets based on a fraction specified by the user. A 

subroutine is provided via ML.Net to perform splits. The 

method in which this subroutine performs a split is 

repeatable such that each time it does so, the same 

resultant data sets are created from the original input 

data. Thus, no concern is needed for unrepeatable or 

random results in training over multiple passes. 

The next step in the process is to create pipelines for 

specific algorithms with user-specified options and 

additional transforms (such as normalizers). Once a 

pipeline is configured, it can then be provided the 

training data and fitted resulting in a trained model that 

can make predictions. Test data is used to evaluate the fit 

and overall generalization of the model. 

Permutation Feature Importance (PFI) is calculated with 

a subroutine implemented in the ML.Net library. The 

subroutine iteratively investigates each feature’s 

contribution to the model (i.e., weight) by selecting a 

single feature and permuting its values a specified 

number of times. This is achieved by randomly shuffling 

the position of the values in the array. The newly 

permuted feature curve is then run through the model and 

the loss function is computed. This is done as many times 

as the user specifies, finally culminating in a quantitative 

assessment (i.e., by loss function) of how much the 

changes in a specific feature impacted the accuracy of 

the predictions. This process is then performed for each 

feature and the magnitude of loss function changes can 

be tabulated by feature. This methodology is algorithm-

agnostic and is widely applied. 

Unfortunately, the MLR, DTA, and NN modules of IP 

are not made available through the provided API and are 

therefore not accessible from the software written by the 

author. Due to a lack of time and resources, PFI is not 

performed on these algorithms as it would need to be 

done manually. In place of this, a similar feature 

selection module (experienced eye) is available within 

the IP software to assess the feature importance for these 

algorithms. Results are calculated for these three 

estimators as an indirect but meaningful comparison. 

ML.Net provides a subroutine to the user (AutoML) that 

alters hyperparameters and configuration options for 

algorithms to optimize model training and fitting. 

AutoML can create numerous pipelines for different 

algorithms dynamically and execute them in a single run 

providing flexibility. This enables the user to try 

different algorithms on their data and determine which 

ones are the best suited. The AutoML subroutine aims to 

optimize a loss function specified by the user (e.g., R2, 

MAE, etc.). 

AutoML utilizes different searching algorithms such as 

grid search, random search, and Bayesian optimization 

to iteratively select hyperparameters and options as it 

builds pipelines. 

Once the user is content with a trained model, the binary 

object representing the model in computer memory may 

be saved to disk as a zip file. It can be retrieved at a later 

point and used again to estimate data. It is noteworthy 

that not all information from the model training process 

is archived in the saved file. In fact, very little 

information is preserved about the training data, 

hyperparameters used, model options, etc. This issue 

arises from the design of the objects and interfaces within 

ML.Net. 

A solution proposed by the author is to create a 

serializable wrapper class around the byte array data 

representing the model. Additional important 

information can then be stored in this class and saved and 

retrieved as a serializable object. Unfortunately, it is not 
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possible to retrieve some information from the model 

runs generated by AutoML pipelines such as 

hyperparameters used. L1 and L2 regularization 

parameters may be extracted from logs but it is a tedious 

and difficult process. 

The software created by the author implements a 

queueing system where parameters for specific runs can 

be set up sequentially, including the selection of training 

data to aggregate by formation top or by facies curves 

and then run together at the same time. This allows the 

user the ability to automate predictions by configuring 

labels, features, training data, test data, algorithms, and 

hyperparameters at the same time. 

It is beyond the scope of this paper to provide 

comprehensive source code detailing an implementation. 

HYPERPARAMETERS 

Hyperparameters generally refer to a set of specific 

attributes that are related to the building of machine 

learning models. These attributes commonly include 

parameters that control things like regularization. In the 

case of tree-based algorithms: tree size, criteria for 

splitting nodes, etc. 

Hyperparameters play a large role in the outcome of a 

model being trained and how it will predict data. Below 

are some key hyperparameters related to decision trees, 

how they are used, and how they affect fitting. 

Regularization Parameters, L1 and L2 

Decision trees are designed to over-fit data when 

training. One method of countering this effect is to 

implement regularization. There are three types of 

regularization: Least Absolute Shrinkage and Selection 

Operator (LASSO, L1), Ridge (L2), and by utilizing both 

L1 and L2 (ElasticNet) (Hastie et al., 2017, pp. 61-73, 

82, 364-367, 607-611). 

Regularization works by adding a penalty term to the loss 

function (i.e., MAE) per Equation 12 (in terms of L1) 

(Ciampiconi et al., 2023). 

𝐿𝑜𝑠𝑠𝐿1 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 + 𝜆 ∑ |𝑤𝑖|

 

 

 

Equation 12: L1 regularization 

In this case, the parameter 𝜆 determines the strength of 

the regularization against the coefficients (weights) of 

the model (wi). This encourages the model to keep those 

coefficients as small as possible. 

The L1 or LASSO method of regularization tends to 

drive some of the weights to zero, which can help remove 

non-contributing features in high-dimension feature sets, 

thereby performing feature selection for you. 

L2 or ridge regularization works the same as L1, 

however, the penalty applied uses squared weights which 

helps balance out features instead of driving them to zero 

(Equation 13). This also helps to enhance the stability 

and performance of a model. 

𝐿𝑜𝑠𝑠𝐿2 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 + 𝜆 ∑ |𝑤𝑖
2|

 

 

 

Equation 13: L2 regularization 

There is a bias-variance tradeoff between L1 and L2 

regularizations regarding prediction error. L1 tends to 

have a higher bias and lower variance (less complex 

model), whereas L2 has a lower bias and higher variance 

(more complex model) (Hastie et al, 2017, p. 38, pp. 219-

227). 

In summary, L1 regularization helps remove useless 

features and promotes sparsity, L2 will retain features 

but try to balance them. 

ElasticNet regularization linearly combines both L1 and 

L2 penalties. 

If regularization results in very large 𝜆 values it will 

produce an under-fit model, whereas if the 𝜆 values are 

small it will produce an over-fit model.  

Learning Rate 

Another important hyperparameter for decision trees is 

the learning rate. This controls the contribution of each 

weak learner in an ensemble-boosted model. Slower 

learning creates a more robust model less prone to over-

fitting and is probably one of the most important 

hyperparameters for the user to consider with boosted 

ensemble models.  
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Number of Iterations 

The number of iterations parameter controls how many 

predictors are made in the ensemble model (number of 

subsequent trees in the case of boosting). There is a 

tradeoff between the number of iterations and learning 

rate. If the learning rate is low, the number of iterations 

needs to be high. It is possible that too many iterations 

can lead to overfitting a model. 

Maximum Depth, Maximum Leaf Nodes 

These parameters control the size of the tree, complexity, 

and help to control over-fitting. 

Minimum Samples Per Leaf 

This parameter controls the minimum number of 

samples used to create a split to compute information 

gain. Increasing the value of this parameter may help to 

prevent over-fitting. This parameter guarantees a 

minimum number of samples in a leaf node. 

Minimum Samples Per Split 

This parameter controls the minimum number of 

samples required to create a split. This helps prevent 

splits that may result in very small datasets. Larger 

values may help to prevent over-fitting, like minimum 

samples per leaf. However, this parameter differs as it 

does not guarantee a minimum number of samples in a 

leaf node. 

Feature Fraction 

This parameter controls the percentage of features 

selected randomly at each iteration when building trees. 

Higher values may help to prevent over-fitting. 

Bagging Fraction 

When bagging, this controls the fraction of rows selected 

randomly. 

Minimum Gain to Split 

This parameter specifies the minimum information gain 

required to split a leaf. 

Early Stopping Round 

This parameter controls the number of training rounds 

that occur. If a loss metric does not improve in the last x 

rounds, then model training is stopped. 

Subsampling Rate 

This parameter controls the portion of data used to train 

each tree (i.e., training rate). 

DATASET 

A Permian Basin well (University Lands 7-16 #10) is 

chosen from the public domain to use in this paper. This 

well has wireline log data available with total gamma ray 

(GR), bulk density (RHOB), photoelectric factor (PEF), 

thermal neutron porosity (NPHI), deep laterolog 

resistivity (RDEEP), and compressional sonic slowness 

(DTC). This well is selected as these are commonly 

available wireline measurements and provide a good 

application of logistic regression. 

The curve chosen to predict is PEF, known to be a 

difficult log measurement to estimate as it varies non-

linearly with other log measurements. In addition, 

numerous historical logging suites without PEF 

measurements are widely available. This commonly 

requires synthesis of PEF data to perform interpretations. 

All other wireline curves listed above are used as features 

in predicting PEF as summarized in Table 2. 

Features Label 

GR (GAPI) PEF (b/e) 

RHOB (g/cm3)  

NPHI (dec.)  

DTC (µs/ft)  

RDEEP (ohm-m)  

Table 2: data used for logistic regression 

The University Lands 7-16 #10 well penetrates Permian 

stratigraphy from the Glorieta formation through to the 

Strawn. Various lithofacies are present including 

limestones, dolostones, sandstones, silts, organic-rich 

shales, carbonaceous shales, etc. This provides a robust 

test of the prediction algorithms over a wide range of log 

responses in each distinct lithology (Figure 6).  
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Figure 6: University Lands 7-16 #10 wireline data

GROUPING DATA 

As a standard in this paper, data has been grouped for 

regression over the entire well interval from top to 

bottom. It has, however, been observed by the author that 

if rock types are broken out and similar lithologies 

grouped together by facies and/or formations it improves 

the fit of the regressions. Training logistic regressions on 

formation or facies-grouped data is therefore 

recommended to get the most accurate results possible. 

DATA PREPARATION 

Prior to building machine learning models, data is 

prepared from the well by depth shifting all curves to the 

total gamma-ray as a reference and editing the log data 

using an automated MLR-based editing algorithm 

(Banas et. al., 2021).  

The term normalization may have multiple meanings to 

a petrophysicist. One definition is to transform data on a 

well-to-well basis. This type of normalization has not 

been performed on this data set as the study consists of a 

single well and it is not necessary to do so. 

Normalization in the domain of machine learning may 

refer to pre-processing data in the form of mapping 

values to a specified range suitable for ML models (i.e., 

0-1). The author has performed this step, tested it against 

ML.Net’s algorithms, and found that it is not necessary. 

No improvement or change in fits or loss functions has 

been noted by normalizing data to a 0-1 range. When 

using AutoML, however, some normalizers are 

automatically added to appropriate pipelines, making 

this step unnecessary for the user. 

Another form of data pre-processing is linearizing 

specific features for use as training data. As an example, 

deep resistivity can be linearized by taking a logarithmic 

base 10 transform of the data. The author has tested the 

impact of linearizing resistivity in various algorithms 

when it is being used as a feature and found that it is only 
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impactful when running linear algorithms (i.e., MLR). 

Decision-tree and convergence algorithms do not seem 

to benefit from linearizing resistivity as a feature. 

When resistivity is being used as a label (or curve to 

predict), it is beneficial to linearize resistivity for all 

algorithms. This has been tested by the author and 

thought to be to be very impactful in prediction accuracy. 

Since the base 10 logarithm of resistivity is being 

predicted, it is then necessary for the user to convert the 

predicted values back into the correct base (i.e., 10^x). 

Environmental corrections have been found to be useful. 

This is especially the case in heavily washed-out 

intervals where highly weighted features can be 

environmentally corrected thereby improving the model. 

Environmental correction is also important in multi-well 

modeling as it assists in normalizing data. 

METHODOLOGY 

PEF is selected as a label to be predicted from the 

features GR, RHOB, DTC, NPHI, RDEEP (Table 2).  

AutoML is used for all algorithms (except for GAM and 

any internal IP modules). A 10-second training time is 

used in the AutoML subroutine to optimize algorithm 

hyperparameters. The same test/train split fraction and 

resultant data sets are used throughout the process for all 

algorithms.  

As the IP modules (i.e., DTA, NN, MLR) are not able to 

use data directly from the ML.Net application, the test 

and train data sets are written out as array curves into the 

IP software and then used as inputs for training. 

Loss functions are computed for each model and 

tabulated to assess training and generalization (test) error 

over the data sets. In addition, for ML.Net models 

Permutation Feature Importance is computed and 5-fold 

cross-validation is performed on the test data set (Hastie 

et al., 2017, pp. 241-249). 

MULTI-WELL WORKFLOW 

When building machine learning models with data from 

multiple wells additional care must be taken to prepare 

the data properly for training. 

The same workflow as previously described can be used 

consisting of depth shifting, editing, and 

environmentally correcting the data. 

When working with multiwell datasets, however, the 

interpreter should evaluate the statistical relationships 

between well data when performing these steps to 

identify and correct any biases, shifts, potential outlying 

data, or noise. 

Due to the ability of decision-tree-based regressors to fit 

data well, if noise or outliers are present in the training 

data set, the model will train to it and predict these 

values. 

Well-to-well normalization should take place on feature 

and label data where appropriate. Widely applied 

normalization on unedited and un-environmentally 

corrected data can be detrimental in removing reservoir 

response and skewing data. This step needs to be 

performed with great care by the interpreter on a 

lithology or formation-based level with a concise 

understanding of the reservoir response. 

Finally, once all these steps have been taken the data can 

be aggregated from many wells to train a model and 

predictions made in many wells with selected feature 

curves. 

Multiple models can be built and deployed as needed to 

constrain correlations to specific lithologies or reservoir 

types. Furthermore, specific wells can be used for 

training purposes in a hub-and-spoke fashion to 

propagate predictive models to wells located close to the 

training well(s) with assumed similar properties. 

This workflow is useful when generating synthetic data 

(i.e., PEF) by leveraging relationships in offset wells 

where data is available from specific formations or 

lithology types to create robust correlations. This is a 

better option than using data from lithologically 

dissimilar intervals within the same well to train a model. 

Predicted data can be adjusted through normalization to 

reference wells or additional editing to produce the 

appropriate results as expected by the interpreter. 

RESULTS 

The tabulated results of estimating PEF with the different 

regression algorithms are shown in Table 3. The 

algorithm with the best fit, the highest R2, and the lowest 

MAE is Light GBM. This algorithm has also been used 

in winning solutions of many machine learning 

competitions that have taken place 

(https://github.com/Microsoft/LightGBM/tree/master/e

xamples). 

https://github.com/Microsoft/LightGBM/tree/master/examples
https://github.com/Microsoft/LightGBM/tree/master/examples
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Algorithm Training 
Set R2 

Test Set 
R2 

Training Set 
MAE (b/e) 

Test Set 
MAE (b/e) 

Training 
Set MSE 

Train R2 % < 
Light GBM 

Train MAE % >  
Light GBM 

Light GBM 0.82520 0.84721 0.26090 0.24785 0.13829 0.00000 0.00000 

Fast Tree 0.82252 0.84642 0.26295 0.24850 0.14047 0.32501 0.78533 

Fast Tree 
Tweedie 

0.82099 0.84101 0.26494 0.25266 0.14168 0.51042 1.54805 

Fast Forest 0.79171 0.80245 0.29628 0.28954 0.16486 4.05852 13.55990 

GAM 0.77474 0.77578 0.30778 0.30663 0.17854 6.11462 17.96800 

DTA 0.74159 0.76590 0.32890 0.31500 0.20760 10.13210 26.05970 
MLR 0.66506 0.66911 0.40630 0.40720 0.26550 19.40540 55.72539 

OLS 0.66411 0.66912 0.40654 0.40751 0.26590 19.52110 55.82006 

LBFGS 0.62690 0.62525 0.44075 0.44640 0.29541 24.03000 68.93043 

SDCA 0.60657 0.61065 0.45290 0.45951 0.31148 26.49400 73.58609 

NN 0.57610 0.58165 0.49930 0.50000 0.38230 30.18590 91.37014 

OGD 0.43324 0.44593 0.56109 0.56177 0.44904 47.49840 115.0563 

Table 3: PEF estimation results

The next best regressors are other ensemble decision-

tree-based models such as FT, FTT, FF, and GAM. DTA 

then follows with MLR/OLS. Finally, NN and gradient-

based optimization algorithms perform the poorest. 

As Light GBM is the most accurate predictor, two 

calculations are made evaluating the training data MAE 

and R2 values from other algorithms as compared to 

Light GBM. These are shown in the last two columns of 

Table 3. These calculations show that the other boosted 

decision tree-based algorithms are very similar in 

prediction accuracy, within 0.5% R2 and 1.5% MAE.  

The full range of MAE for training, test data, and cross-

validation is shown in Figure 7. As cross-validation is 

not performed with DTA, MLR, or NN, these results are 

omitted. 

 

 

Figure 7: MAE for training, test and cross validation data  

The MAE between test and train data is remarkably 

similar, shown in Figure 8. 

 

Figure 8: test and train MAE for all algorithms 

Plotting the original recorded PEF data along with 

several estimated curves in different formats provides 

more insight about the overall accuracy of the predicted 

data. 

As an example, the recorded PEF data over the entire 

well interval is displayed along with the estimated values 

from Light GBM, MLR, and SDCA in a histogram 

(Figure 10). These three algorithms are compared as 

representative estimators of a decision-tree algorithm, 

optimization algorithm, and multiple linear regression. 

It is apparent that the MLR and SDCA predicted values 

are less capable of recreating the two modes in the 
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Figure 9: PEF histogram

data set centered around 3 and 5 barns/electron, 

corresponding to shale and carbonate facies. Light GBM 

very accurately predicts the same modal behavior as the 

original data.  

The data are displayed in a cross-plot against another 

variable (GR) in Figure 10. The same data and coloring 

scheme from Figure 9 are used to show the recorded and 

estimated PEF data. An outline of the recorded data is 

made in black. It is visible that Light GBM (blue) does 

an excellent job of matching the overall shape of the data 

trend in this 2D space, whereas the MLR (green) and 

SDCA (pink) predictions are skewed. 

PFI results are computed in terms of R2 change to the 

resultant regression for the ML.Net algorithms utilizing 

the test data set. An example of the PFI results and cross-

validation for Light GBM is shown in Figure 11. This is 

performed for all ML.Net algorithms and the resultant 

PFI values per feature are aggregated into a box plot 

(Figure 12) to summarize the variability of each feature 

per algorithm. 

 

Figure 10: cross-plot of PEF data vs. GR 

The results demonstrate that the largest variance is in 

RHOB, which happens to be the most important feature 

in most algorithms to predict PEF. Across all algorithms, 

generally, it follows that the order of importance of 

features in predicting PEF are (from most to least 

important): RHOB, RDEEP, GR, DTC, and NPHIL.  
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Figure 11: Example PFI and CV calculations for LGBM

 

Figure 12: PFI results 

As a meaningful but indirect comparison of PFI for the 

DTA, MLR, and NN algorithms, the experienced eye 

(EE) module from IP is run. An 80/20 test/train data split 

is specified in the module. This is not necessarily the 

same split as created by ML.Net, as it is generated by the 

experienced eye module. The results are in terms of 

overall feature influence in a percentage value and 

shown in Figure 13. 

 

Figure 13: EEFS influence per feature 

It is worth noting that NPHI is identified through the EE 

feature selection module and the ML.Net PFI subroutine 

as a non-contributing feature. Based on these results the 

interpreter may choose to remove NPHI as a feature and 

not use it to predict PEF. 

To understand the variance in outcomes from changing 

hyperparameters during the AutoML runs, MAE is 

tabulated for every pipeline created by AutoML for each 
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Figure 14: AutoML MAE variation 

algorithm during model training. A training time of 10 

seconds is used; however, this does not guarantee that 

each algorithm has an equal number of pipelines 

generated by AutoML, due to each one having different 

training speeds. The results are displayed in Figure 14.  

It is observed the largest variance occurs in OGD 

followed by SDCA, FTT, OLS, Light GBM, FF, 

LBFGS, and FT. A GAM value is displayed, however, 

only a single pipeline is created as this algorithm is not 

useable with AutoML so there is no variation. It does 

appear that the decision tree-based algorithms have a 

reasonable range of MAE from this process of searching 

for hyperparameters by AutoML. 

AUTOML REPEATABILITY (LIGHT GBM) 

Several AutoML experiments and pipelines are created 

with different training times and hyperparameters to 

investigate the repeatability of the Light GBM algorithm. 

These data are examined to see how these variables 

impact the variance in the model fitting and estimations. 

Ten runs are made in total with training times varying 

from 1-20 seconds. The results are displayed in Table 4 

with R2, MAE loss functions, and PFI values for features 

(in terms of R2 change). Variability in R2 and MAE of 

the training data set are summarized in Figures 15 and 16 

respectively. 

 

 

Figure 15: R2 repeatability (training data) 

 

Figure 16: MAE repeatability (training data) 
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Run 
# 

Training 
Time (s) 

R2 

Training Data 

MAE (b/e) 
Training Data 

PFI NPHI 
(ΔR2) 

PFI GR 
(ΔR2) 

PFI DTC 
(ΔR2) 

PFI RDEEP 
(ΔR2) 

PFI RHOB 
(ΔR2) 

1 5 0.8244 0.2614 0.0629 0.1628 0.1677 0.3397 0.4334 
2 5 0.8232 0.2619 0.0922 0.2088 0.2613 0.3473 0.4460 
3 5 0.8195 0.2666 0.0469 0.1452 0.1411 0.2835 0.4408 
4 20 0.8236 0.2628 0.0598 0.1680 0.1754 0.3277 0.4745 
5 5 0.8225 0.2645 0.0782 0.1502 0.2030 0.3121 0.3899 
6 5 0.8232 0.2638 0.0392 0.1494 0.1641 0.2915 0.4174 
7 10 0.8218 0.2644 0.0516 0.1648 0.1609 0.2934 0.4269 
8 1 0.8185 0.2679 0.0606 0.1555 0.2086 0.2818 0.4533 
9 3 0.8204 0.2660 0.0343 0.1424 0.1727 0.2534 0.3842 

10 3 0.8185 0.2679 0.0620 0.1538 0.2102 0.2735 0.4454 
 

Table 4: Light GBM repeatability

PFI repeatability is summarized per feature in Figure 17.  

 

Figure 17: AutoML PFI repeatability Light GBM 

To check Light GBM’s sensitivity to noise, a random 

error is added to feature and label data. This is achieved 

by using a random function to select some rows as a 

percentage of the total and replace the values in these 

rows. In this case, 20% of the rows are replaced with 

random values. A random double number is then 

generated for each row between 0 and 1 and multiplied 

by the range of the PEF data and this value is then added 

to the minimum value observed as in Equation 14. 

𝑣𝑎𝑙𝑢𝑒 = 𝑟𝑎𝑛𝑑(𝑥) ∗ 𝑟𝑎𝑛𝑔𝑒 + 𝑚𝑖𝑛 

Equation 14: generating random data 

The results of training using randomized data are shown 

in Figure 18. There is an increase in MAE with error as 

expected but variance does not change significantly. 

 

 

Figure 18: MAE with and without random error 

Changes in PFI are also tabulated between the training 

data set with random error and the original. There is 

some change but not significant as seen in Figure 19. 

 

Figure 19: PFI changes with random error 
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Figure 20: AutoML sensitivity to loss functions

AUTOML SENSITIVITY TO LOSS FUNCTIONS 

Multiple runs are made with AutoML optimizing 

different loss functions to evaluate the sensitivity of 

AutoML to loss function optimization. Light GBM is 

selected as the predictive algorithm with AutoML using 

10-second training times on the same label/feature data 

displayed in Table 2. The results of the loss function 

magnitudes are displayed in Figure 20. 

Figure 20 shows four different plots for each loss 

function as designated on the y-axis. The uppermost left 

plot, for example, displays the resulting values of R2 

when AutoML is instructed to optimize for each different 

loss function along the x-axis (specified by text labels). 

This data shows that when R2 is selected as the loss 

function to optimize, it also has the highest value of R2 

in the group (followed by MAE, RMSE, and MSE). 

In the case of MSE and RMSE however, AutoML is able 

to optimize these loss metrics better when R2 is selected 

rather than the optimized loss function itself (on the 

training data). 

CONCLUSIONS 

MAE is compiled by the type of algorithm used to 

predict PEF, broken down into the categories of decision 

tree, gradient descent, linear, DTA, and NN as depicted 

in Figure 21. 

Decision-tree-based algorithms tend to perform with the 

highest predictive accuracy and lowest MAE followed 

by DTA, linear, NN, and gradient descent. 

Gradient descent-based algorithms tend to perform very 

poorly matching log data with inconsistent repeatability 

when trained with AutoML. The Neural Network 

module also performed poorly, despite an array of 

configuration parameters used to train it. 

In terms of training time, ease of use, and accuracy, the 

best algorithms found to predict PEF data in order are 

Light GBM, Fast Tree, Fast Tree Tweedie, Fast Forest, 

and GAM. 
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Figure 21: MAE by algorithm type

NOMENCLATURE  

 

Abbreviations 

API = application programming interface 

CNN = convolutional neural network 

CV = cross validation 

DART = dropout meets multiple additive regression 

trees 

DNN = deep neural network 

DT = decision tree 

DTA = domain transfer analysis 

DTC = compressional sonic slowness 

E = entropy 

EE = experienced eye 

ERR = error 

FF = fast forest 

FT = fast tree 

FTT = fast tree tweedie 

GAM = generalized additive model 

GBDT = gradient-boosted decision trees 

GBM = gradient-boosted machine 

GD = gradient descent 

GOSS = gradient one-sided sampling 

GR = gamma ray 

IG = information gain 

IP = interactive petrophysics 

L1 = LASSO regularization parameter 

L2 = ridge regularization parameter 

LASSO = least absolute shrinkage and selection 

operator 

L-BFGS = limited memory Broyden Fletcher Goldfarb 

Shanno 

MAE = mean absolute error 

ML.Net = Microsoft machine learning .NET library 

MLR = multiple linear regression 

MSE = mean squared error 

NN = neural network 

NPHI = thermal neutron porosity 

OGD = online gradient descent 

OLS = ordinary least squares 

PEF = photoelectric factor 

PFI = permutation feature importance 

R2 = coefficient of determination 

RDEEP = deep resistivity 

RHOB = bulk density 

RMSE = root mean squared error 

SDCA = stochastic dual coordinate ascent 

 

Symbols 

y = function value 

�̂� = predicted or estimated value of function y 

e = error or residual 

λ = regularization parameter 

γ = weighting parameter for child nodes 
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n = total number of samples in a set 

i = iteration count, position in set 

p = probability 

w = model weight 
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