
SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

1

AN APPLIED APPROACH TO PREDICTING PETROPHYSICAL LOG

DATA WITH MICROSOFT ML.NET REGRESSORS

Ryan Banas1

1. PetroRes Consulting

Copyright 2024, held jointly by the Society of Petrophysicists and Well Log

Analysts (SPWLA) and the submitting authors.

This paper was prepared for presentation at the SPWLA Asia-Pacific Regional

Conference held in Bangkok, Thailand, Oct 6-9, 2024.

ABSTRACT

Machine learning has been used in the field of

petrophysics for a long time and is well-understood by

petrophysicists. Recently, however, more sophisticated

regressors and models have been made available through

interfaces such as Python and Microsoft’s ML.Net

machine learning software library. The purpose of this

paper is to provide a guide to access current machine

learning libraries to predict log data through software,

such as Interactive Petrophysics (IP), utilize the latest

logistic (and classification) regressors to predict various

types of petrophysical data, provide a quantitative

evaluation of the prediction accuracy and repeatability of

new regressors against well-known standards, and

finally provide a method to evaluate the best

initialization and hyperparameters for each regressor

used.

Quantitative comparisons of the regression results to

existing and known methods such as multi-linear

regression (MLR), Domain Transfer Analysis (DTA),

and simple neural networks (NN) are provided as a

benchmark. This paper includes a workflow to predict

petrophysical data, including methods to group data and

recommended pre-processing steps before training

models.

This paper is on applied petrophysics, computer science,

and quantitative evaluation of the methods and means to

predict petrophysical data. It includes a concise analysis

of what current technology is available, how the latest

regressors function, strengths and weaknesses of these

regressors, and the best parameters to use to predict

different data types.

Although other machine learning petrophysics papers

have been published, this one is specific to the decision-

tree and gradient-based regressors available in the public

technology space (e.g., Light GBM, fast forest, online

gradient descent, etc.) and that have been implemented

in the Microsoft ML.Net library.

INTRODUCTION

Most practicing petrophysicists probably use machine

learning regularly and have been doing so for many

decades before the artificial intelligence renaissance that

has recently taken place. Methods such as logistic

regression and classification are routinely used to predict

petrophysics-related data. The domain of petrophysics is

vast and encompasses many different data in the form of

wellbore wireline measurements (logs), seismic data,

rock facies, core measurements, etc. to which these

algorithms may be applied.

There are curve prediction tools available in most

commercial petrophysics software such as linear

regression, non-linear curve fitting, MLR, DTA, NN,

etc. The limitations and accuracy of these predictors are

sufficiently understood from decades of use. This paper

provides an overview of some newer technologies and

quantification of decision tree and gradient-based

regressors in comparison to these older and well-known

methods of estimating data.

A basic workflow is introduced that outlines the

necessary steps to use the newer technologies to predict

data. Details are provided on a specific implementation

of these new algorithms utilizing Microsoft’s ML.Net

library.

LOSS FUNCTIONS

A loss function quantifies the magnitude of error

between predicted and actual values. Distinct types of

loss functions can be used to help guide model fitting and

assess the overall quality of model predictions.

Commonly used loss functions are the coefficient of

determination (R2), Mean Absolute Error (MAE), Mean

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

2

Square Error (MSE), and Root Mean Square Error

(RMSE). These loss functions have different units, uses,

and applications.

The coefficient of determination (R2) is defined in

Equations 1 to 5. It provides a measure of the strength

and direction of association that exists between two

variables (Doge, Y., 2008, pp. 88-91).

This loss function assumes the following: continuous

variables, there is a linear or linearizable relationship, no

significant outliers exist, and the variables are

approximately normally distributed. It does not provide

much information about overfitting issues or feature

importance.

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖

Equation 1: mean value

𝑒𝑖 = (𝑦𝑖 − �̂�𝑖)

Equation 2: error or residual between actual value y, and

predicted value �̂�

𝑆𝑆𝑅𝐸𝑆 = ∑ 𝑒𝑖
2

𝑛

𝑖

Equation 3: sum of residual squares

𝑆𝑆𝑇𝑂𝑇 = ∑(𝑦𝑖 − �̅�)2

𝑛

𝑖

Equation 4: sum of total deviation from mean

𝑅2 = 1 −
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇

Equation 5: coefficient of determination

Mean Absolute Error (MAE) (Equation 6) treats all

errors similarly, with no penalty applied to outliers. This

may be a better metric for noisy data. The units are also

easy to interpret and understand (Ciampiconi et al.,

2023).

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖

Equation 6: mean absolute error

Mean Square Error (MSE) (Equation 7) penalizes

outliers with a square term. MSE is also scale-dependent

and has different units than the original function, making

it more difficult to directly compare (Dodge, Y., 2008, p.

138).

𝑀𝑆𝐸 =
1

𝑛
∑(𝑒𝑖)

2

𝑛

𝑖

Equation 7: mean square error

Root Mean Square Error (RMSE) (equation 8) takes the

root of MSE thereby making the units more interpretable

while still penalizing outliers (Dodge, Y., p. 366).

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑒𝑖)

2

𝑛

𝑖

Equation 8: root mean square error

Loss functions can drive machine learning model

training through iterative minimization. It is important to

choose the correct loss function to achieve the desired

results.

MACHINE LEARNING

There are many different types of machine learning

algorithms available through public software libraries.

Some are suited to solving specific problems and may or

may not be tangible to a petrophysicist working with

subsurface data.

Three main types of machine learning models are

implemented in Microsoft’s ML.Net software library:

logistic regression, classification (binary and multi-

class), and neural networks (e.g., deep neural networks,

convolutional neural networks).

Logistic regression estimates continuous functions

(labels) using inputs (features). Classification can be of

both binary and multi-class types, with the latter more

appropriate for problems such as lithologic facies

prediction. Neural networks have been successfully used

to build language learning models (i.e., Chat Generative

Pre-Trained Transformer) and models for image

recognition, pattern matching, and audio processing.

These are generally regarded as black boxes that are very

vast and deep neural networks trained on enormous

amounts of data.

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

3

Each one of these learning models have different

applications that depend on the problem that is presented

and the type of data that is used. Tradeoffs occur between

the ability to handle the type of data (in terms of missing

values, outliers, irrelevant inputs, interpretability of the

model) and predictive power (Hastie et al., 2017, pp.

351-352).

The newer decision tree-based algorithms examined in

this paper can handle both logistic regression and

classification. In ML.Net, these include Light Gradient

Boosted Machine (GBM) (Guolin et al., 2017), Fast

Tree, Fast Tree Tweedie, Fast Forest, and Generalized

Additive Model (GAM) (Hastie et al., 2017, pp 295-

297). There are additional Quasi-Newtonian or iterative

mathematical optimization algorithms such as Stochastic

Dual Coordinate Ascent (SDCA) (Shalev-Shwartz, S.,

2013), and Online Gradient Decent (OGD). These are

methods that are used to find zeroes or local maxima and

minima of differentiable loss functions thereby

optimizing weights in a model for the best fit.

Additional linear models such as Ordinary Least Squares

(OLS) and Poisson (Limited-memory Broyden-Fletcher-

Goldfarb-Shanno, L-BFGS) regression are included.

Details of these algorithms can be found in the Microsoft

Machine Learning .NET API documentation

(https://learn.microsoft.com/en-us/dotnet/machine-

learning/).

BASIC DECISION TREES

Decision trees are simple data structures represented by

nodes and branches. Nodes can either be a decision node

(internal) or a leaf node (external). Branches between

nodes represent decision rules. Decision trees work by

asking binary (yes/no) questions to split nodes and are

well suited to regression and classification problems

(Hastie et al., 2017, pp. 307-310).

Decision trees operate based on two principles: entropy

and information gain.

Entropy (E) is a mathematical quantification of

randomness in a data set. It is defined in Equation 9 for

N classes with a probability (pi) of randomly picking an

element of class i. Pi, represents the number of members

in class i divided by the total number of members of all

classes.

𝐸 = − ∑ p𝑖log2(p𝑖)

𝑁

𝑖

Equation 9: entropy

Information Gain (IG) quantifies the quality of splitting

a data set at a specific point by computing the amount of

entropy removed. When building decision trees, it is

advantageous to seek zero entropy in each branch to

create more accurate predictions. This essentially

quantifies the process of splitting the data into well-

sorted sets.

Information gain in a decision tree is calculated by

subtracting the weighted average of the entropy values

computed for each child node. The weighting term, γ

represents the number of elements in each child node

divided by the total number of elements in all child

nodes.

𝐼𝐺 = 𝐸(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑ 𝛾𝑖 ∗ 𝐸(𝑐ℎ𝑖𝑙𝑑𝑖)

𝑁

𝑖

Equation 10: information gain

Figure 1: parent and child nodes in a tree

As an example, the entropy of the parent node of Figure

1 is equal to 1.0 (equivalent number of elements in each

class, Equation 9), and a split is performed that results in

two branches. The left branch has a single class (entropy

= 0, Equation 9) with 3 elements, and the right branch

results in 7 elements of two different classes.

https://learn.microsoft.com/en-us/dotnet/machine-learning/
https://learn.microsoft.com/en-us/dotnet/machine-learning/

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

4

Figure 2: entropy calculations

The entropy value of the right branch computed using

Equation 9 (as in Figure 2) is 0.8631. In this case, the

weight terms are 0.3 (3/10) for the left branch (γleft) and

0.7 (7/10) for the right branch (γright). The resultant value

of information gain (from Equation 10) is 0.3958 as

shown in Equation 11. This value of information gain

represents how much entropy is removed from the

system due to the split.

𝐼𝐺 = 1 − [𝐸𝑙𝑒𝑓𝑡𝛾𝑙𝑒𝑓𝑡 + 𝐸𝑟𝑖𝑔ℎ𝑡𝛾𝑟𝑖𝑔ℎ𝑡]

 = 1 − [0 ∗ 0.3 + 0.8631 ∗ 0.7]
 = 1 − 0.6042
 = 0.3958

Equation 11: information gain

Higher values of information gain imply more sorting

has occurred. In decision trees, the amount of IG can also

be used to determine how useful a particular feature is

sorting classes. The best decision trees have attributes

that return high information gain and low entropy.

Figure 3 shows an example of utilizing wireline log

measurements as features in building a decision tree.

Cutoff values can be used as decisions to sort the data as

depicted in the branches and nodes of the tree.

Overfitting Problem

Due to the inherent nature of decision tree algorithms,

there is a tendency to overfit data while training. This

occurs when the tree recursively splits the feature space

creating many branches and leaf nodes leading to

extremely specific rules that only apply to the training

data set.

Figure 3: wireline log-based decision tree

An over-fit model tends to capture noise, is fit-for-

purpose, overly complex, and sensitive to inputs (Hastie

et al., 2017, pp.219-220).

There are strategies or techniques to counter this effect,

including regularization, pruning, controlling tree depth,

and ensemble learning.

Other Notable Problems with Decision Trees

Decision trees can also suffer from instability due to high

variance. Since trees are hierarchical structures, errors

made in the initial splits tend to propagate down the tree.

They are also prone to producing data with a lack of

smoothness (Hastie et al., 2017, pp. 312-313).

Techniques discussed later in this paper, such as

bagging, boosting, and controlling tree growth

parameters help mitigate this problem.

Ensemble Learning

Ensemble learning is a technique that enhances

prediction accuracy by utilizing multiple models in

conjunction. This approach creates a sophisticated model

by integrating a variety of simpler models (weak

learners) (Hastie et al., 2017, pp. 605-606).

A random forest (Figure 4) is a type of ensemble learning

algorithm where several decision trees are created in

parallel with subsets of the training data. An average of

the results of each model is taken as the final answer

from the ensemble (Hastie et al., 2017, pp. 587-588).

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

5

Figure 4: depiction of random forest

There exists a variety of ensemble learning models. The

reader may be familiar with terms such as bagging and

boosting. Bagging (or bootstrap aggregation) refers to

the process of training multiple models in parallel, as

implemented in a random forest (Hastie et al., 2017, pp.

249-252, 282-288). Bagging tends to be more flexible

and less sensitive than boosting. Bagging utilizes random

sampling with replacement, and works well with

decision trees (Hastie et al., 2017, pp. 587) (Doge, Y.,

2008, pp. 51-53).

As opposed to bagging, boosting is the sequential

training of multiple models whereby each subsequent

model learns from the mistakes of the previous model.

Subsequent learners place more emphasis on

undertrained or misclassified samples thereby improving

the model fit, however, this can lead to over-fitting.

Boosting utilizes random sampling with replacement

over weighted data. It is important to point out that data

is weighted in a boosted model, unlike bagging. Boosting

is used in gradient-boosted trees (Hastie et al., 2017, pp.

86-88, 337-342, 353-358, 605-606).

The process of boosting produces incremental gains that

can be added together to create a model that is very

accurate at predicting a value. This is done by combining

the many weak learners into a single strong learner.

As an example, the first model (m) in a boosted ensemble

may predict a value by simply averaging all the values in

a data set. To improve upon this, the subsequent model

(m+1) will aim to minimize the residuals or differences

between the predicted values and the actual values.

Scaling the residuals with some factor helps to prevent

over-fitting and to generalize the model. This scaling

factor is defined as the learning rate.

By using a differentiable loss function, such as MSE, the

process of gradient descent can then be used to help to

minimize the residuals by numerical optimization.

Hence, we have gradient-boosted trees. The gradient

movement occurs in the direction of minimizing the loss

function, i.e., a negative gradient. Predictions for each

tree added to the ensemble model are multiplied by the

learning rate. The learning rate thereby controls the step

size the ensemble takes in converging. It is advisable to

employ a small learning rate along with a substantial

number of trees in boosting to facilitate easier

convergence (Hastie et al., 2017, pp. 358-361).

As with other similar convergence algorithms, the

number of iterations can be limited if the loss metric does

not improve after many boosting rounds thereby

stopping the algorithm and saving computational time.

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

6

Figure 5: predicted data over N boosting rounds

Gradient boosting is well suited for tabular data (i.e., log

or core data), may be used with both logistic regression

and classification algorithms, and can be quantitatively

interpreted unlike other machine learning black box

models (i.e., DNN/CNN).

An example is shown in Figure 5 of training and

predicted data with Light GBM over N boosting

iterations. The average value of the training data is first

predicted and as the number of boosting iterations

(models added to the ensemble) increases the predictions

become more accurate.

There are several boosting algorithms available within

ML.Net: Gradient-based One-Side Sampling (GOSS),

Gradient Boosting Decision Tree (GBDT), and Dropouts

meet multiple Additive Regression Trees (DART).

These boosting algorithms have different performance

characteristics and applications for specific types of data.

For example, GBDT may be a better choice for clean

data sets whereas DART may be better suited to noisier

data (Soyoung, L., 2024).

LIGHT GBM

Light GBM is one of the most accurate algorithms

available from ML.Net when predicting petrophysical

data from the author’s experience. It is widely used and

well-maintained.

Light GBM has been optimized to create decision trees

that grow leaf-wise. It uses histogram-based algorithms

to bucket data into bins that are used to calculate

information gain and create splits within the data set as

the tree grows. Light GBM uses GOSS to improve

training efficiency. It also employs feature bundling to

combine features and reduce dimensionality in the data

set. This results in more efficient tree construction

(Goulin et al., 2017)(Soyoung, L., 2024).

Like other decision-tree-based algorithms, Light GBM

suffers from the problem of over-fitting training data. To

help mitigate this, parameters can be constrained that

control the growth of the tree. Specifically, weak

predictors are purposefully created (shallow trees) and

controlled by hyperparameters to prevent over-fitting.

Regularization also plays a large role to help control

over-fitting.

Light GBM can be used to solve both logistic regression

and classification problems.

ML.NET ALGORITHMS

Table 1 summarizes each ML.Net regressor, data

structure, and algorithm used.

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

7

Regressor Data Structure Algorithm Details

Light GBM Decision tree Gradient Boosted Decision Tree (Goulin, K. et al., 2017)

Fast Forest Decision tree Random forest (Hastie et al., 2017, pp 587-588)

Fast Tree Decision tree Gradient Boosted Decision Tree (using the Multiple Additive Regression

Tree algorithm) (Rashmi, K.V., 2015)

Fast Tree Tweedie Decision tree Gradient Boosted Decision Tree (Yang et al., 2016)

OLS Linear least

squares

Ordinary least squares linear regression

SDCA

Convergence

algorithm

Stochastic Dual Coordinate Ascent optimization technique for convex

objective functions (Shalev-Shwartz, S., 2013) (Hsiang-Fu, Y. et al., 2010)

OGD Convergence

algorithm

Stochastic gradient descent optimization technique for convex loss

functions (non-batch)

LBFGS Poisson Linear

regression

Poisson regression implementation with LBFGS optimization technique

(generalized linear model)

GAM Decision tree Shallow Gradient Boosted Trees (Lou, Y., et al., 2012)

Non-linear functions

Table 1: summary of ML.net algorithms

EVALUATING ALGORITHMS

In this paper, the predictions from training and test data

made by each algorithm are evaluated based on

calculated loss functions. In addition, feature

information is provided for the algorithms by

permutation feature importance calculations. Five-fold

cross-validation is performed on test data, and algorithm

prediction repeatability is analyzed by varying

hyperparameters during training.

Predicted data is also visualized graphically in cross

plots to evaluate fit and overall shape. This is an

important step as some algorithms can be prone to

creating oddly shaped predicted data sets in these 2D

spaces (e.g., flatline cutoffs at specific values, etc.) that

may not be discernable in histograms or statistical plots.

Input data is split into a test and train fraction for

evaluating each algorithm. For training, 80% of the data

is used with the remaining 20% for testing. This helps

the interpreter assess whether the model is overfitted to

the training data. By testing the predictions with the test

data set using k-fold cross-validation, a quantitative

assessment of the generalization of the model is possible.

SOFTWARE IMPLEMENTATION

In this paper, Interactive Petrophysics and Microsoft’s

ML.Net library are used together to perform predictions

of log data by a computer program written by the author

in C#.

An Application Programming Interface (API) is made

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

8

available through IP to access objects within the memory

space of a running instance of the application.

Specifically, access is provided to array-based log data

represented in single-precision floating-point 32-bit

format. These data are imported into the ML.Net data

structures to build regression models and to predict data.

The predictions are then written back into the IP memory

space via the API resulting in a new curve. This new

estimated data can then be visualized and used for

subsequent calculations.

The basic workflow of ML.Net consists of loading

training data into an implemented data frame interface

(IDataView object), providing options for an algorithm,

creating a model, training it, making predictions, and

evaluating the predictions. This workflow is performed

iteratively until the user is content with the results.

The terminology used by Microsoft to describe the

process of mapping the raw data to the resultant

predictions is a pipeline. Pipelines are created for each

algorithm and can be static or sweepable. A sweepable

pipeline is a collection of pipelines that have been

configured to vary options or parameters to provide

multiple estimators.

In source code, the process consists of extracting the data

from the data source (e.g., petrophysics software API,

LAS file, database, etc.) and populating a data frame.

Once this step is complete, the data is split into training

and test sets based on a fraction specified by the user. A

subroutine is provided via ML.Net to perform splits. The

method in which this subroutine performs a split is

repeatable such that each time it does so, the same

resultant data sets are created from the original input

data. Thus, no concern is needed for unrepeatable or

random results in training over multiple passes.

The next step in the process is to create pipelines for

specific algorithms with user-specified options and

additional transforms (such as normalizers). Once a

pipeline is configured, it can then be provided the

training data and fitted resulting in a trained model that

can make predictions. Test data is used to evaluate the fit

and overall generalization of the model.

Permutation Feature Importance (PFI) is calculated with

a subroutine implemented in the ML.Net library. The

subroutine iteratively investigates each feature’s

contribution to the model (i.e., weight) by selecting a

single feature and permuting its values a specified

number of times. This is achieved by randomly shuffling

the position of the values in the array. The newly

permuted feature curve is then run through the model and

the loss function is computed. This is done as many times

as the user specifies, finally culminating in a quantitative

assessment (i.e., by loss function) of how much the

changes in a specific feature impacted the accuracy of

the predictions. This process is then performed for each

feature and the magnitude of loss function changes can

be tabulated by feature. This methodology is algorithm-

agnostic and is widely applied.

Unfortunately, the MLR, DTA, and NN modules of IP

are not made available through the provided API and are

therefore not accessible from the software written by the

author. Due to a lack of time and resources, PFI is not

performed on these algorithms as it would need to be

done manually. In place of this, a similar feature

selection module (experienced eye) is available within

the IP software to assess the feature importance for these

algorithms. Results are calculated for these three

estimators as an indirect but meaningful comparison.

ML.Net provides a subroutine to the user (AutoML) that

alters hyperparameters and configuration options for

algorithms to optimize model training and fitting.

AutoML can create numerous pipelines for different

algorithms dynamically and execute them in a single run

providing flexibility. This enables the user to try

different algorithms on their data and determine which

ones are the best suited. The AutoML subroutine aims to

optimize a loss function specified by the user (e.g., R2,

MAE, etc.).

AutoML utilizes different searching algorithms such as

grid search, random search, and Bayesian optimization

to iteratively select hyperparameters and options as it

builds pipelines.

Once the user is content with a trained model, the binary

object representing the model in computer memory may

be saved to disk as a zip file. It can be retrieved at a later

point and used again to estimate data. It is noteworthy

that not all information from the model training process

is archived in the saved file. In fact, very little

information is preserved about the training data,

hyperparameters used, model options, etc. This issue

arises from the design of the objects and interfaces within

ML.Net.

A solution proposed by the author is to create a

serializable wrapper class around the byte array data

representing the model. Additional important

information can then be stored in this class and saved and

retrieved as a serializable object. Unfortunately, it is not

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

9

possible to retrieve some information from the model

runs generated by AutoML pipelines such as

hyperparameters used. L1 and L2 regularization

parameters may be extracted from logs but it is a tedious

and difficult process.

The software created by the author implements a

queueing system where parameters for specific runs can

be set up sequentially, including the selection of training

data to aggregate by formation top or by facies curves

and then run together at the same time. This allows the

user the ability to automate predictions by configuring

labels, features, training data, test data, algorithms, and

hyperparameters at the same time.

It is beyond the scope of this paper to provide

comprehensive source code detailing an implementation.

HYPERPARAMETERS

Hyperparameters generally refer to a set of specific

attributes that are related to the building of machine

learning models. These attributes commonly include

parameters that control things like regularization. In the

case of tree-based algorithms: tree size, criteria for

splitting nodes, etc.

Hyperparameters play a large role in the outcome of a

model being trained and how it will predict data. Below

are some key hyperparameters related to decision trees,

how they are used, and how they affect fitting.

Regularization Parameters, L1 and L2

Decision trees are designed to over-fit data when

training. One method of countering this effect is to

implement regularization. There are three types of

regularization: Least Absolute Shrinkage and Selection

Operator (LASSO, L1), Ridge (L2), and by utilizing both

L1 and L2 (ElasticNet) (Hastie et al., 2017, pp. 61-73,

82, 364-367, 607-611).

Regularization works by adding a penalty term to the loss

function (i.e., MAE) per Equation 12 (in terms of L1)

(Ciampiconi et al., 2023).

𝐿𝑜𝑠𝑠𝐿1 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 + 𝜆 ∑ |𝑤𝑖|

Equation 12: L1 regularization

In this case, the parameter 𝜆 determines the strength of

the regularization against the coefficients (weights) of

the model (wi). This encourages the model to keep those

coefficients as small as possible.

The L1 or LASSO method of regularization tends to

drive some of the weights to zero, which can help remove

non-contributing features in high-dimension feature sets,

thereby performing feature selection for you.

L2 or ridge regularization works the same as L1,

however, the penalty applied uses squared weights which

helps balance out features instead of driving them to zero

(Equation 13). This also helps to enhance the stability

and performance of a model.

𝐿𝑜𝑠𝑠𝐿2 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 + 𝜆 ∑ |𝑤𝑖
2|

Equation 13: L2 regularization

There is a bias-variance tradeoff between L1 and L2

regularizations regarding prediction error. L1 tends to

have a higher bias and lower variance (less complex

model), whereas L2 has a lower bias and higher variance

(more complex model) (Hastie et al, 2017, p. 38, pp. 219-

227).

In summary, L1 regularization helps remove useless

features and promotes sparsity, L2 will retain features

but try to balance them.

ElasticNet regularization linearly combines both L1 and

L2 penalties.

If regularization results in very large 𝜆 values it will

produce an under-fit model, whereas if the 𝜆 values are

small it will produce an over-fit model.

Learning Rate

Another important hyperparameter for decision trees is

the learning rate. This controls the contribution of each

weak learner in an ensemble-boosted model. Slower

learning creates a more robust model less prone to over-

fitting and is probably one of the most important

hyperparameters for the user to consider with boosted

ensemble models.

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

10

Number of Iterations

The number of iterations parameter controls how many

predictors are made in the ensemble model (number of

subsequent trees in the case of boosting). There is a

tradeoff between the number of iterations and learning

rate. If the learning rate is low, the number of iterations

needs to be high. It is possible that too many iterations

can lead to overfitting a model.

Maximum Depth, Maximum Leaf Nodes

These parameters control the size of the tree, complexity,

and help to control over-fitting.

Minimum Samples Per Leaf

This parameter controls the minimum number of

samples used to create a split to compute information

gain. Increasing the value of this parameter may help to

prevent over-fitting. This parameter guarantees a

minimum number of samples in a leaf node.

Minimum Samples Per Split

This parameter controls the minimum number of

samples required to create a split. This helps prevent

splits that may result in very small datasets. Larger

values may help to prevent over-fitting, like minimum

samples per leaf. However, this parameter differs as it

does not guarantee a minimum number of samples in a

leaf node.

Feature Fraction

This parameter controls the percentage of features

selected randomly at each iteration when building trees.

Higher values may help to prevent over-fitting.

Bagging Fraction

When bagging, this controls the fraction of rows selected

randomly.

Minimum Gain to Split

This parameter specifies the minimum information gain

required to split a leaf.

Early Stopping Round

This parameter controls the number of training rounds

that occur. If a loss metric does not improve in the last x

rounds, then model training is stopped.

Subsampling Rate

This parameter controls the portion of data used to train

each tree (i.e., training rate).

DATASET

A Permian Basin well (University Lands 7-16 #10) is

chosen from the public domain to use in this paper. This

well has wireline log data available with total gamma ray

(GR), bulk density (RHOB), photoelectric factor (PEF),

thermal neutron porosity (NPHI), deep laterolog

resistivity (RDEEP), and compressional sonic slowness

(DTC). This well is selected as these are commonly

available wireline measurements and provide a good

application of logistic regression.

The curve chosen to predict is PEF, known to be a

difficult log measurement to estimate as it varies non-

linearly with other log measurements. In addition,

numerous historical logging suites without PEF

measurements are widely available. This commonly

requires synthesis of PEF data to perform interpretations.

All other wireline curves listed above are used as features

in predicting PEF as summarized in Table 2.

Features Label

GR (GAPI) PEF (b/e)

RHOB (g/cm3)

NPHI (dec.)

DTC (µs/ft)

RDEEP (ohm-m)

Table 2: data used for logistic regression

The University Lands 7-16 #10 well penetrates Permian

stratigraphy from the Glorieta formation through to the

Strawn. Various lithofacies are present including

limestones, dolostones, sandstones, silts, organic-rich

shales, carbonaceous shales, etc. This provides a robust

test of the prediction algorithms over a wide range of log

responses in each distinct lithology (Figure 6).

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

11

Figure 6: University Lands 7-16 #10 wireline data

GROUPING DATA

As a standard in this paper, data has been grouped for

regression over the entire well interval from top to

bottom. It has, however, been observed by the author that

if rock types are broken out and similar lithologies

grouped together by facies and/or formations it improves

the fit of the regressions. Training logistic regressions on

formation or facies-grouped data is therefore

recommended to get the most accurate results possible.

DATA PREPARATION

Prior to building machine learning models, data is

prepared from the well by depth shifting all curves to the

total gamma-ray as a reference and editing the log data

using an automated MLR-based editing algorithm

(Banas et. al., 2021).

The term normalization may have multiple meanings to

a petrophysicist. One definition is to transform data on a

well-to-well basis. This type of normalization has not

been performed on this data set as the study consists of a

single well and it is not necessary to do so.

Normalization in the domain of machine learning may

refer to pre-processing data in the form of mapping

values to a specified range suitable for ML models (i.e.,

0-1). The author has performed this step, tested it against

ML.Net’s algorithms, and found that it is not necessary.

No improvement or change in fits or loss functions has

been noted by normalizing data to a 0-1 range. When

using AutoML, however, some normalizers are

automatically added to appropriate pipelines, making

this step unnecessary for the user.

Another form of data pre-processing is linearizing

specific features for use as training data. As an example,

deep resistivity can be linearized by taking a logarithmic

base 10 transform of the data. The author has tested the

impact of linearizing resistivity in various algorithms

when it is being used as a feature and found that it is only

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

12

impactful when running linear algorithms (i.e., MLR).

Decision-tree and convergence algorithms do not seem

to benefit from linearizing resistivity as a feature.

When resistivity is being used as a label (or curve to

predict), it is beneficial to linearize resistivity for all

algorithms. This has been tested by the author and

thought to be to be very impactful in prediction accuracy.

Since the base 10 logarithm of resistivity is being

predicted, it is then necessary for the user to convert the

predicted values back into the correct base (i.e., 10^x).

Environmental corrections have been found to be useful.

This is especially the case in heavily washed-out

intervals where highly weighted features can be

environmentally corrected thereby improving the model.

Environmental correction is also important in multi-well

modeling as it assists in normalizing data.

METHODOLOGY

PEF is selected as a label to be predicted from the

features GR, RHOB, DTC, NPHI, RDEEP (Table 2).

AutoML is used for all algorithms (except for GAM and

any internal IP modules). A 10-second training time is

used in the AutoML subroutine to optimize algorithm

hyperparameters. The same test/train split fraction and

resultant data sets are used throughout the process for all

algorithms.

As the IP modules (i.e., DTA, NN, MLR) are not able to

use data directly from the ML.Net application, the test

and train data sets are written out as array curves into the

IP software and then used as inputs for training.

Loss functions are computed for each model and

tabulated to assess training and generalization (test) error

over the data sets. In addition, for ML.Net models

Permutation Feature Importance is computed and 5-fold

cross-validation is performed on the test data set (Hastie

et al., 2017, pp. 241-249).

MULTI-WELL WORKFLOW

When building machine learning models with data from

multiple wells additional care must be taken to prepare

the data properly for training.

The same workflow as previously described can be used

consisting of depth shifting, editing, and

environmentally correcting the data.

When working with multiwell datasets, however, the

interpreter should evaluate the statistical relationships

between well data when performing these steps to

identify and correct any biases, shifts, potential outlying

data, or noise.

Due to the ability of decision-tree-based regressors to fit

data well, if noise or outliers are present in the training

data set, the model will train to it and predict these

values.

Well-to-well normalization should take place on feature

and label data where appropriate. Widely applied

normalization on unedited and un-environmentally

corrected data can be detrimental in removing reservoir

response and skewing data. This step needs to be

performed with great care by the interpreter on a

lithology or formation-based level with a concise

understanding of the reservoir response.

Finally, once all these steps have been taken the data can

be aggregated from many wells to train a model and

predictions made in many wells with selected feature

curves.

Multiple models can be built and deployed as needed to

constrain correlations to specific lithologies or reservoir

types. Furthermore, specific wells can be used for

training purposes in a hub-and-spoke fashion to

propagate predictive models to wells located close to the

training well(s) with assumed similar properties.

This workflow is useful when generating synthetic data

(i.e., PEF) by leveraging relationships in offset wells

where data is available from specific formations or

lithology types to create robust correlations. This is a

better option than using data from lithologically

dissimilar intervals within the same well to train a model.

Predicted data can be adjusted through normalization to

reference wells or additional editing to produce the

appropriate results as expected by the interpreter.

RESULTS

The tabulated results of estimating PEF with the different

regression algorithms are shown in Table 3. The

algorithm with the best fit, the highest R2, and the lowest

MAE is Light GBM. This algorithm has also been used

in winning solutions of many machine learning

competitions that have taken place

(https://github.com/Microsoft/LightGBM/tree/master/e

xamples).

https://github.com/Microsoft/LightGBM/tree/master/examples
https://github.com/Microsoft/LightGBM/tree/master/examples

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

13

Algorithm Training
Set R2

Test Set
R2

Training Set
MAE (b/e)

Test Set
MAE (b/e)

Training
Set MSE

Train R2 % <
Light GBM

Train MAE % >
Light GBM

Light GBM 0.82520 0.84721 0.26090 0.24785 0.13829 0.00000 0.00000

Fast Tree 0.82252 0.84642 0.26295 0.24850 0.14047 0.32501 0.78533

Fast Tree
Tweedie

0.82099 0.84101 0.26494 0.25266 0.14168 0.51042 1.54805

Fast Forest 0.79171 0.80245 0.29628 0.28954 0.16486 4.05852 13.55990

GAM 0.77474 0.77578 0.30778 0.30663 0.17854 6.11462 17.96800

DTA 0.74159 0.76590 0.32890 0.31500 0.20760 10.13210 26.05970
MLR 0.66506 0.66911 0.40630 0.40720 0.26550 19.40540 55.72539

OLS 0.66411 0.66912 0.40654 0.40751 0.26590 19.52110 55.82006

LBFGS 0.62690 0.62525 0.44075 0.44640 0.29541 24.03000 68.93043

SDCA 0.60657 0.61065 0.45290 0.45951 0.31148 26.49400 73.58609

NN 0.57610 0.58165 0.49930 0.50000 0.38230 30.18590 91.37014

OGD 0.43324 0.44593 0.56109 0.56177 0.44904 47.49840 115.0563

Table 3: PEF estimation results

The next best regressors are other ensemble decision-

tree-based models such as FT, FTT, FF, and GAM. DTA

then follows with MLR/OLS. Finally, NN and gradient-

based optimization algorithms perform the poorest.

As Light GBM is the most accurate predictor, two

calculations are made evaluating the training data MAE

and R2 values from other algorithms as compared to

Light GBM. These are shown in the last two columns of

Table 3. These calculations show that the other boosted

decision tree-based algorithms are very similar in

prediction accuracy, within 0.5% R2 and 1.5% MAE.

The full range of MAE for training, test data, and cross-

validation is shown in Figure 7. As cross-validation is

not performed with DTA, MLR, or NN, these results are

omitted.

Figure 7: MAE for training, test and cross validation data

The MAE between test and train data is remarkably

similar, shown in Figure 8.

Figure 8: test and train MAE for all algorithms

Plotting the original recorded PEF data along with

several estimated curves in different formats provides

more insight about the overall accuracy of the predicted

data.

As an example, the recorded PEF data over the entire

well interval is displayed along with the estimated values

from Light GBM, MLR, and SDCA in a histogram

(Figure 10). These three algorithms are compared as

representative estimators of a decision-tree algorithm,

optimization algorithm, and multiple linear regression.

It is apparent that the MLR and SDCA predicted values

are less capable of recreating the two modes in the

M
A

E
(b

/e
)

y = 1.0604x - 0.0264
R² = 0.998

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Te
st

 M
A

E
(b

/e
)

Train MAE (b/e)

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

14

Figure 9: PEF histogram

data set centered around 3 and 5 barns/electron,

corresponding to shale and carbonate facies. Light GBM

very accurately predicts the same modal behavior as the

original data.

The data are displayed in a cross-plot against another

variable (GR) in Figure 10. The same data and coloring

scheme from Figure 9 are used to show the recorded and

estimated PEF data. An outline of the recorded data is

made in black. It is visible that Light GBM (blue) does

an excellent job of matching the overall shape of the data

trend in this 2D space, whereas the MLR (green) and

SDCA (pink) predictions are skewed.

PFI results are computed in terms of R2 change to the

resultant regression for the ML.Net algorithms utilizing

the test data set. An example of the PFI results and cross-

validation for Light GBM is shown in Figure 11. This is

performed for all ML.Net algorithms and the resultant

PFI values per feature are aggregated into a box plot

(Figure 12) to summarize the variability of each feature

per algorithm.

Figure 10: cross-plot of PEF data vs. GR

The results demonstrate that the largest variance is in

RHOB, which happens to be the most important feature

in most algorithms to predict PEF. Across all algorithms,

generally, it follows that the order of importance of

features in predicting PEF are (from most to least

important): RHOB, RDEEP, GR, DTC, and NPHIL.

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

15

Figure 11: Example PFI and CV calculations for LGBM

Figure 12: PFI results

As a meaningful but indirect comparison of PFI for the

DTA, MLR, and NN algorithms, the experienced eye

(EE) module from IP is run. An 80/20 test/train data split

is specified in the module. This is not necessarily the

same split as created by ML.Net, as it is generated by the

experienced eye module. The results are in terms of

overall feature influence in a percentage value and

shown in Figure 13.

Figure 13: EEFS influence per feature

It is worth noting that NPHI is identified through the EE

feature selection module and the ML.Net PFI subroutine

as a non-contributing feature. Based on these results the

interpreter may choose to remove NPHI as a feature and

not use it to predict PEF.

To understand the variance in outcomes from changing

hyperparameters during the AutoML runs, MAE is

tabulated for every pipeline created by AutoML for each

P
FI

 (
R

2)

0%

10%

20%

30%

40%

50%

60%

RHOB DTC GR RESD NPHIL

EE
FS

 In
fl

u
en

ce
 %

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

16

Figure 14: AutoML MAE variation

algorithm during model training. A training time of 10

seconds is used; however, this does not guarantee that

each algorithm has an equal number of pipelines

generated by AutoML, due to each one having different

training speeds. The results are displayed in Figure 14.

It is observed the largest variance occurs in OGD

followed by SDCA, FTT, OLS, Light GBM, FF,

LBFGS, and FT. A GAM value is displayed, however,

only a single pipeline is created as this algorithm is not

useable with AutoML so there is no variation. It does

appear that the decision tree-based algorithms have a

reasonable range of MAE from this process of searching

for hyperparameters by AutoML.

AUTOML REPEATABILITY (LIGHT GBM)

Several AutoML experiments and pipelines are created

with different training times and hyperparameters to

investigate the repeatability of the Light GBM algorithm.

These data are examined to see how these variables

impact the variance in the model fitting and estimations.

Ten runs are made in total with training times varying

from 1-20 seconds. The results are displayed in Table 4

with R2, MAE loss functions, and PFI values for features

(in terms of R2 change). Variability in R2 and MAE of

the training data set are summarized in Figures 15 and 16

respectively.

Figure 15: R2 repeatability (training data)

Figure 16: MAE repeatability (training data)

M
A

E
(b

/e
)

R
2

M
A

E
(b

/e
)

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

17

Run

Training
Time (s)

R2

Training Data

MAE (b/e)
Training Data

PFI NPHI
(ΔR2)

PFI GR
(ΔR2)

PFI DTC
(ΔR2)

PFI RDEEP
(ΔR2)

PFI RHOB
(ΔR2)

1 5 0.8244 0.2614 0.0629 0.1628 0.1677 0.3397 0.4334
2 5 0.8232 0.2619 0.0922 0.2088 0.2613 0.3473 0.4460
3 5 0.8195 0.2666 0.0469 0.1452 0.1411 0.2835 0.4408
4 20 0.8236 0.2628 0.0598 0.1680 0.1754 0.3277 0.4745
5 5 0.8225 0.2645 0.0782 0.1502 0.2030 0.3121 0.3899
6 5 0.8232 0.2638 0.0392 0.1494 0.1641 0.2915 0.4174
7 10 0.8218 0.2644 0.0516 0.1648 0.1609 0.2934 0.4269
8 1 0.8185 0.2679 0.0606 0.1555 0.2086 0.2818 0.4533
9 3 0.8204 0.2660 0.0343 0.1424 0.1727 0.2534 0.3842

10 3 0.8185 0.2679 0.0620 0.1538 0.2102 0.2735 0.4454

Table 4: Light GBM repeatability

PFI repeatability is summarized per feature in Figure 17.

Figure 17: AutoML PFI repeatability Light GBM

To check Light GBM’s sensitivity to noise, a random

error is added to feature and label data. This is achieved

by using a random function to select some rows as a

percentage of the total and replace the values in these

rows. In this case, 20% of the rows are replaced with

random values. A random double number is then

generated for each row between 0 and 1 and multiplied

by the range of the PEF data and this value is then added

to the minimum value observed as in Equation 14.

𝑣𝑎𝑙𝑢𝑒 = 𝑟𝑎𝑛𝑑(𝑥) ∗ 𝑟𝑎𝑛𝑔𝑒 + 𝑚𝑖𝑛

Equation 14: generating random data

The results of training using randomized data are shown

in Figure 18. There is an increase in MAE with error as

expected but variance does not change significantly.

Figure 18: MAE with and without random error

Changes in PFI are also tabulated between the training

data set with random error and the original. There is

some change but not significant as seen in Figure 19.

Figure 19: PFI changes with random error

P
FI

 (
Δ

R
2)

M
AE

 (b
/e

)

0 0.1 0.2 0.3 0.4 0.5

RHOB

RDEEP

DTC

GR

NPHI

ΔR2

Err No Err

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

18

Figure 20: AutoML sensitivity to loss functions

AUTOML SENSITIVITY TO LOSS FUNCTIONS

Multiple runs are made with AutoML optimizing

different loss functions to evaluate the sensitivity of

AutoML to loss function optimization. Light GBM is

selected as the predictive algorithm with AutoML using

10-second training times on the same label/feature data

displayed in Table 2. The results of the loss function

magnitudes are displayed in Figure 20.

Figure 20 shows four different plots for each loss

function as designated on the y-axis. The uppermost left

plot, for example, displays the resulting values of R2

when AutoML is instructed to optimize for each different

loss function along the x-axis (specified by text labels).

This data shows that when R2 is selected as the loss

function to optimize, it also has the highest value of R2

in the group (followed by MAE, RMSE, and MSE).

In the case of MSE and RMSE however, AutoML is able

to optimize these loss metrics better when R2 is selected

rather than the optimized loss function itself (on the

training data).

CONCLUSIONS

MAE is compiled by the type of algorithm used to

predict PEF, broken down into the categories of decision

tree, gradient descent, linear, DTA, and NN as depicted

in Figure 21.

Decision-tree-based algorithms tend to perform with the

highest predictive accuracy and lowest MAE followed

by DTA, linear, NN, and gradient descent.

Gradient descent-based algorithms tend to perform very

poorly matching log data with inconsistent repeatability

when trained with AutoML. The Neural Network

module also performed poorly, despite an array of

configuration parameters used to train it.

In terms of training time, ease of use, and accuracy, the

best algorithms found to predict PEF data in order are

Light GBM, Fast Tree, Fast Tree Tweedie, Fast Forest,

and GAM.

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

19

Figure 21: MAE by algorithm type

NOMENCLATURE

Abbreviations

API = application programming interface

CNN = convolutional neural network

CV = cross validation

DART = dropout meets multiple additive regression

trees

DNN = deep neural network

DT = decision tree

DTA = domain transfer analysis

DTC = compressional sonic slowness

E = entropy

EE = experienced eye

ERR = error

FF = fast forest

FT = fast tree

FTT = fast tree tweedie

GAM = generalized additive model

GBDT = gradient-boosted decision trees

GBM = gradient-boosted machine

GD = gradient descent

GOSS = gradient one-sided sampling

GR = gamma ray

IG = information gain

IP = interactive petrophysics

L1 = LASSO regularization parameter

L2 = ridge regularization parameter

LASSO = least absolute shrinkage and selection

operator

L-BFGS = limited memory Broyden Fletcher Goldfarb

Shanno

MAE = mean absolute error

ML.Net = Microsoft machine learning .NET library

MLR = multiple linear regression

MSE = mean squared error

NN = neural network

NPHI = thermal neutron porosity

OGD = online gradient descent

OLS = ordinary least squares

PEF = photoelectric factor

PFI = permutation feature importance

R2 = coefficient of determination

RDEEP = deep resistivity

RHOB = bulk density

RMSE = root mean squared error

SDCA = stochastic dual coordinate ascent

Symbols

y = function value

�̂� = predicted or estimated value of function y

e = error or residual

λ = regularization parameter

γ = weighting parameter for child nodes

M
A

E
(b

/e
)

SPWLA Asia-Pacific Regional Conference, Bangkok, Oct 6-9, 2024

20

n = total number of samples in a set

i = iteration count, position in set

p = probability

w = model weight

REFERENCES

Banas, R., McDonald, A., Perkins, T., 2021, Novel

Methodology for Automation of Bad Well Log Data

Identification and Repair, SPWLA 62nd Annual Logging

Symposium, May 17-20, 2021

Ciampiconi, L., Elwood, A., Leonardi, M., Mohamed,

A., Rozza, A., A Survey and Taxonomy of Loss

Functions in Machine Learning, 2023.

Dodge, Y., (2008) The Concise Encyclopedia of

Statistics, Springer, New York, NY. ISBN 978-0-387-

31742-7.

Guolin, K., Meng, Q., Finley, T., Wang, T., Chen, W.,

Weidong, M., Qiwei, Y., Tie-Yan, L., LightGBM: A

Highly Efficient Gradient Boosting Decision Tree, 31st

Conference on Neural Information Processing Systems

(NIPS), 2017, Long Beach, CA.

Hastie, T., Tibshirani, R., Friedman, J., (2017), The

Elements of Statistical Learning: Data Mining,

Inference, and Prediction, (Second Edition), Springer,

New York, NY.

Hsiang-Fu, Y., Cho-Jui, H., Kai_Wei, C., Chih-Jen, L.,

Large Linear Classification When Data Cannot Fit in

Memory, Knowledge Discovery from Data (KDD), July

25-28, 2010, Washington DC, USA

Lou, Y., Caruana, R., Gehrke, J, 2012, Intelligible

Models for Classification and Regression, Knowledge

Discovery and Data Mining (KDD), Beijing, China, 12-

16 August.

Lou, Y., Caruana, R., Gehrke, J., Intelligible Models for

Classification and Regression, Knowledge Discovery

from Data (KDD), August 12-16, Beijing, China

Microsoft ML.Net API Documentation, (2024, October

1), from https://learn.microsoft.com/en-

us/dotnet/machine-learning/

Microsoft Light GBM Winning Solutions (2024,

October 1), from

https://github.com/Microsoft/LightGBM/tree/master/ex

amples

Rashmi, K.V., Gilad-Bachrach, R., DART: Dropouts

meet Multiple Additive Regression Trees, Proceedings

of 18th International Conference on Artificial

Intelligence and Statistics, 2015, San Diego, CA, USA.

Shalev-Shwartz, S., Stochastic Dual Coordinate Ascent

Methods for Regularized Loss Minimization, Journal of

Machine Learning Research 14, 2013, pp. 567-599

Soyoung, L., Simple Explanation of LightGBM without

Complicated Mathematics (March 16, 2024), from

https://medium.com/@soyoungluna/simple-

explanation-of-lightgbm-without-complicated-

mathematics-973998ec848f

ABOUT THE AUTHORS

Ryan Banas is a petrophysicist, petroleum engineer and

licensed professional geoscientist with over 20 years of

experience working for both service and operating

companies. He is currently the managing director of

PetroRes Consulting providing petrophysics,

geoscience, engineering, and software consulting

services to clients worldwide. Previously he has worked

for Apache Corporation, Michigan Technological

University, Schlumberger, Entergy Nuclear, and

Precision Consulting

https://learn.microsoft.com/en-us/dotnet/machine-learning/
https://learn.microsoft.com/en-us/dotnet/machine-learning/
https://github.com/Microsoft/LightGBM/tree/master/examples
https://github.com/Microsoft/LightGBM/tree/master/examples
https://medium.com/@soyoungluna/simple-explanation-of-lightgbm-without-complicated-mathematics-973998ec848f
https://medium.com/@soyoungluna/simple-explanation-of-lightgbm-without-complicated-mathematics-973998ec848f
https://medium.com/@soyoungluna/simple-explanation-of-lightgbm-without-complicated-mathematics-973998ec848f

